Media móvil Media de datos de series temporales (observaciones igualmente espaciadas en el tiempo) de varios períodos consecutivos. Llamado en movimiento porque se recalcula continuamente a medida que se obtienen nuevos datos, progresa eliminando el valor más antiguo y agregando el valor más reciente. Por ejemplo, el promedio móvil de las ventas de seis meses se puede calcular tomando el promedio de las ventas de enero a junio, luego el promedio de las ventas de febrero a julio, luego de marzo a agosto, y así sucesivamente. Las medias móviles (1) reducen el efecto de las variaciones temporales en los datos, (2) mejoran el ajuste de los datos a una línea (un proceso llamado suavizado) para mostrar la tendencia de los datos más claramente, y (3) resaltan cualquier valor superior o inferior al tendencia. Si está calculando algo con una variación muy alta lo mejor que puede ser capaz de hacer es averiguar el promedio móvil. Quería saber cuál era el promedio móvil de los datos, así que tendría una mejor comprensión de cómo estábamos haciendo. Cuando usted está tratando de averiguar algunos números que cambian a menudo lo mejor que puede hacer es calcular el promedio móvil. Como un ejemplo de SMA, considere una garantía con los siguientes precios de cierre en 15 días: Semana 1 (5 días) 20, 22, 24, 25, 23 Semana 2 (5 días) 26, 28, 26, 29, 27 Semana 3 (5 días) 28, 30, 27, 29, 28 Un MA de 10 días promediaría los precios de cierre de los primeros 10 días como el primer punto de datos. El próximo punto de datos bajaría el precio más temprano, agregaría el precio el día 11 y tomaría el promedio, y así sucesivamente como se muestra a continuación. Como se mencionó anteriormente, las AMs se retrasan en la acción de los precios actuales porque se basan en precios pasados, mientras más largo sea el período de tiempo para la MA, mayor será el retraso. Así, un MA de 200 días tendrá un grado mucho mayor de retraso que un MA de 20 días porque contiene precios durante los últimos 200 días. La longitud de la MA a utilizar depende de los objetivos comerciales, con MA más cortos utilizados para el comercio a corto plazo y de más largo plazo MA más adecuado para los inversores a largo plazo. El MA de 200 días es ampliamente seguido por inversores y comerciantes, con rupturas por encima y por debajo de este promedio móvil considerado como señales comerciales importantes. Las MA también imparten señales comerciales importantes por sí solas, o cuando dos medias se cruzan. Un aumento MA indica que la seguridad está en una tendencia alcista. Mientras que un MA decreciente indica que está en una tendencia bajista. Del mismo modo, el impulso ascendente se confirma con un cruce alcista. Que se produce cuando una MA a corto plazo cruza por encima de un MA a más largo plazo. El impulso hacia abajo se confirma con un cruce bajista, que ocurre cuando una MA a corto plazo cruza por debajo de un MA a largo plazo. Promedios de movimiento: ¿Cuáles son? Entre los indicadores técnicos más populares, se utilizan medias móviles para medir la dirección de la tendencia actual . Cada tipo de media móvil (comúnmente escrito en este tutorial como MA) es un resultado matemático que se calcula promediando un número de puntos de datos pasados. Una vez determinado, el promedio resultante se traza en un gráfico para permitir a los operadores ver los datos suavizados en lugar de centrarse en las fluctuaciones de precios cotidianas que son inherentes a todos los mercados financieros. La forma más simple de una media móvil, apropiadamente conocida como media móvil simple (SMA), se calcula tomando la media aritmética de un conjunto dado de valores. Por ejemplo, para calcular una media móvil básica de 10 días, sumaría los precios de cierre de los últimos 10 días y luego dividiría el resultado por 10. En la Figura 1, la suma de los precios de los últimos 10 días (110) es Dividido por el número de días (10) para llegar al promedio de 10 días. Si un comerciante desea ver un promedio de 50 días en lugar, el mismo tipo de cálculo se haría, pero incluiría los precios en los últimos 50 días. El promedio resultante a continuación (11) tiene en cuenta los últimos 10 puntos de datos con el fin de dar a los comerciantes una idea de cómo un activo tiene un precio en relación con los últimos 10 días. Quizás usted se está preguntando porqué los comerciantes técnicos llaman a esta herramienta una media móvil y no apenas una media regular. La respuesta es que cuando los nuevos valores estén disponibles, los puntos de datos más antiguos deben ser eliminados del conjunto y los nuevos puntos de datos deben entrar para reemplazarlos. Por lo tanto, el conjunto de datos se mueve constantemente para tener en cuenta los nuevos datos a medida que estén disponibles. Este método de cálculo garantiza que sólo se contabilice la información actual. En la figura 2, una vez que se agrega el nuevo valor de 5 al conjunto, el cuadro rojo (que representa los últimos 10 puntos de datos) se desplaza a la derecha y el último valor de 15 se deja caer del cálculo. Debido a que el valor relativamente pequeño de 5 reemplaza el valor alto de 15, se esperaría ver el promedio de la disminución de conjunto de datos, lo que hace, en este caso de 11 a 10. ¿Qué aspecto tienen los promedios móviles Una vez que los valores de la MA se han calculado, se representan en un gráfico y luego se conectan para crear una línea de media móvil. Estas líneas curvas son comunes en las cartas de los comerciantes técnicos, pero la forma en que se utilizan puede variar drásticamente (más sobre esto más adelante). Como se puede ver en la Figura 3, es posible agregar más de una media móvil a cualquier gráfico ajustando el número de períodos de tiempo utilizados en el cálculo. Estas líneas curvas pueden parecer distracción o confusión al principio, pero youll acostumbrarse a ellos a medida que pasa el tiempo. La línea roja es simplemente el precio medio en los últimos 50 días, mientras que la línea azul es el precio promedio en los últimos 100 días. Ahora que usted entiende lo que es un promedio móvil y lo que parece, bien introducir un tipo diferente de media móvil y examinar cómo se diferencia de la mencionada media móvil simple. La media móvil simple es muy popular entre los comerciantes, pero como todos los indicadores técnicos, tiene sus críticos. Muchas personas argumentan que la utilidad de la SMA es limitada porque cada punto en la serie de datos se pondera de la misma, independientemente de dónde se produce en la secuencia. Los críticos sostienen que los datos más recientes son más significativos que los datos anteriores y deberían tener una mayor influencia en el resultado final. En respuesta a esta crítica, los comerciantes comenzaron a dar más peso a los datos recientes, que desde entonces ha llevado a la invención de varios tipos de nuevos promedios, el más popular de los cuales es el promedio móvil exponencial (EMA). Promedio móvil exponencial El promedio móvil exponencial es un tipo de media móvil que da más peso a los precios recientes en un intento de hacerla más receptiva A nueva información. Aprender la ecuación algo complicada para calcular un EMA puede ser innecesario para muchos comerciantes, ya que casi todos los paquetes de gráficos hacen los cálculos para usted. Sin embargo, para los geeks de matemáticas que hay, aquí es la ecuación EMA: Cuando se utiliza la fórmula para calcular el primer punto de la EMA, puede observar que no hay ningún valor disponible para utilizar como la EMA anterior. Este pequeño problema se puede resolver iniciando el cálculo con una media móvil simple y continuando con la fórmula anterior desde allí. Le hemos proporcionado una hoja de cálculo de ejemplo que incluye ejemplos reales de cómo calcular una media móvil simple y una media móvil exponencial. La diferencia entre la EMA y la SMA Ahora que tiene una mejor comprensión de cómo se calculan la SMA y la EMA, echemos un vistazo a cómo estos promedios difieren. Al mirar el cálculo de la EMA, notará que se hace más hincapié en los puntos de datos recientes, lo que lo convierte en un tipo de promedio ponderado. En la Figura 5, el número de periodos de tiempo utilizados en cada promedio es idéntico (15), pero la EMA responde más rápidamente a los precios cambiantes. Observe cómo el EMA tiene un valor más alto cuando el precio está subiendo, y cae más rápidamente que el SMA cuando el precio está disminuyendo. Esta capacidad de respuesta es la razón principal por la que muchos comerciantes prefieren utilizar la EMA sobre la SMA. ¿Qué significan los diferentes días? Las medias móviles son un indicador totalmente personalizable, lo que significa que el usuario puede elegir libremente el tiempo que desee al crear el promedio. Los períodos de tiempo más comunes utilizados en las medias móviles son 15, 20, 30, 50, 100 y 200 días. Cuanto más corto sea el lapso de tiempo utilizado para crear el promedio, más sensible será a los cambios de precios. Cuanto más largo sea el lapso de tiempo, menos sensible o más suavizado será el promedio. No hay un marco de tiempo adecuado para usar al configurar sus promedios móviles. La mejor manera de averiguar cuál funciona mejor para usted es experimentar con una serie de diferentes períodos de tiempo hasta encontrar uno que se adapte a su estrategia. Medios móviles: cómo utilizarlos Suscríbase a las noticias para utilizar para obtener las últimas ideas y análisis Gracias por inscribirse en Investopedia Insights - noticias para usar. En la práctica, el promedio móvil proporcionará una buena estimación de la media de la serie temporal si la media Es constante o cambia lentamente. En el caso de una media constante, el mayor valor de m dará las mejores estimaciones de la media subyacente. Un período de observación más largo promediará los efectos de la variabilidad. El propósito de proporcionar un m más pequeño es permitir que el pronóstico responda a un cambio en el proceso subyacente. Para ilustrar, proponemos un conjunto de datos que incorpora cambios en la media subyacente de la serie temporal. La figura muestra la serie de tiempo utilizada para la ilustración junto con la demanda media de la que se generó la serie. La media comienza como una constante en 10. Comenzando en el tiempo 21, aumenta en una unidad en cada período hasta que alcanza el valor de 20 en el tiempo 30. Entonces se vuelve constante otra vez. Los datos se simulan sumando a la media un ruido aleatorio de una distribución Normal con media cero y desviación estándar 3. Los resultados de la simulación se redondean al entero más próximo. La tabla muestra las observaciones simuladas utilizadas para el ejemplo. Cuando usamos la tabla, debemos recordar que en cualquier momento dado, sólo se conocen los datos pasados. Las estimaciones del parámetro del modelo, para tres valores diferentes de m se muestran junto con la media de las series temporales de la siguiente figura. La figura muestra la media móvil de la estimación de la media en cada momento y no la previsión. Los pronósticos cambiarían las curvas de media móvil a la derecha por períodos. Una conclusión es inmediatamente aparente de la figura. Para las tres estimaciones, la media móvil se queda por detrás de la tendencia lineal, con el rezago aumentando con m. El retraso es la distancia entre el modelo y la estimación en la dimensión temporal. Debido al desfase, el promedio móvil subestima las observaciones a medida que la media aumenta. El sesgo del estimador es la diferencia en un tiempo específico en el valor medio del modelo y el valor medio predicho por el promedio móvil. El sesgo cuando la media está aumentando es negativo. Para una media decreciente, el sesgo es positivo. El retraso en el tiempo y el sesgo introducido en la estimación son funciones de m. Cuanto mayor sea el valor de m. Mayor es la magnitud del retraso y sesgo. Para una serie cada vez mayor con tendencia a. Los valores de retraso y sesgo del estimador de la media se dan en las ecuaciones siguientes. Las curvas de ejemplo no coinciden con estas ecuaciones porque el modelo de ejemplo no está aumentando continuamente, sino que comienza como una constante, cambia a una tendencia y luego vuelve a ser constante de nuevo. También las curvas de ejemplo se ven afectadas por el ruido. El pronóstico de media móvil de los períodos en el futuro se representa desplazando las curvas hacia la derecha. El desfase y sesgo aumentan proporcionalmente. Las ecuaciones a continuación indican el retraso y sesgo de los períodos de previsión en el futuro en comparación con los parámetros del modelo. Nuevamente, estas fórmulas son para una serie de tiempo con una tendencia lineal constante. No debemos sorprendernos de este resultado. El estimador del promedio móvil se basa en el supuesto de una media constante, y el ejemplo tiene una tendencia lineal en la media durante una parte del período de estudio. Dado que las series de tiempo real rara vez obedecerán exactamente las suposiciones de cualquier modelo, debemos estar preparados para tales resultados. También podemos concluir de la figura que la variabilidad del ruido tiene el efecto más grande para m más pequeño. La estimación es mucho más volátil para el promedio móvil de 5 que el promedio móvil de 20. Tenemos los deseos en conflicto de aumentar m para reducir el efecto de la variabilidad debido al ruido y disminuir m para hacer el pronóstico más sensible a los cambios En promedio El error es la diferencia entre los datos reales y el valor previsto. Si la serie temporal es verdaderamente un valor constante, el valor esperado del error es cero y la varianza del error está compuesta por un término que es una función de y un segundo término que es la varianza del ruido. El primer término es la varianza de la media estimada con una muestra de m observaciones, suponiendo que los datos provienen de una población con una media constante. Este término se minimiza haciendo m tan grande como sea posible. Un m grande hace que el pronóstico no responda a un cambio en la serie temporal subyacente. Para hacer que el pronóstico responda a los cambios, queremos que m sea lo más pequeño posible (1), pero esto aumenta la varianza del error. La predicción práctica requiere un valor intermedio. Previsión con Excel El complemento de previsión implementa las fórmulas de promedio móvil. El siguiente ejemplo muestra el análisis proporcionado por el complemento para los datos de muestra en la columna B. Las primeras 10 observaciones se indexan -9 a 0. En comparación con la tabla anterior, los índices de período se desplazan en -10. Las primeras diez observaciones proporcionan los valores iniciales para la estimación y se utilizan para calcular la media móvil para el período 0. La columna MA (10) (C) muestra las medias móviles calculadas. El parámetro de la media móvil m está en la celda C3. La columna Fore (1) (D) muestra un pronóstico para un período en el futuro. El intervalo de pronóstico está en la celda D3. Cuando el intervalo de pronóstico se cambia a un número mayor, los números de la columna Fore se desplazan hacia abajo. La columna Err (1) (E) muestra la diferencia entre la observación y el pronóstico. Por ejemplo, la observación en el tiempo 1 es 6. El valor pronosticado a partir de la media móvil en el tiempo 0 es 11.1. El error entonces es -5.1. La media de desviación estándar y la media de desviación media (MAD) se calculan en las celdas E6 y E7, respectivamente. medición en movimiento Un término de análisis técnico que significa el precio medio de una garantía durante un período de tiempo especificado (siendo los más comunes 20, 30, 50, 100 y 200 días), utilizado para detectar las tendencias de precios al aplanar grandes fluctuaciones. Esta es quizás la variable más comúnmente utilizada en el análisis técnico. Moviendo los datos promedio se utiliza para crear gráficos que muestran si un precio de las acciones está tendencia hacia arriba o hacia abajo. Pueden usarse para rastrear patrones diarios, semanales o mensuales. Cada nuevo día (o semanas o meses) los números se agregan a la media y los números más viejos se caen así, el promedio se mueve con el tiempo. En general. Cuanto más corto sea el período de tiempo utilizado, más volátiles los precios aparecerán, por lo que, por ejemplo, las líneas de 20 días de media móvil tienden a moverse hacia arriba y hacia abajo más de 200 líneas de media móvil de día. Índice alto-bajo índice bollinger bandas índice de la fuerza verdadera índice del canal de los productos básicos promedio móvil doble exponencial (DEMA) índice de disparidad medio móvil exponencial Chaikin oscilador medio de la envoltura Copyright copy 2016 WebFinance, Inc. Todos los derechos reservados. La reproducción no autorizada, total o parcial, está estrictamente prohibida.
Cómo utilizar una estrategia de arbitraje en el comercio de divisas Forex arbitraje es una estrategia de comercio libre de riesgo que permite a los comerciantes de divisas al por menor para obtener un beneficio sin exposición a la moneda abierta. La estrategia consiste en actuar rápidamente en las oportunidades presentadas por la ineficiencia de los precios, mientras existan. Este tipo de comercio de arbitraje implica la compra y venta de diferentes pares de divisas para explotar cualquier ineficiencia de los precios. Si echamos un vistazo al siguiente ejemplo, podemos entender mejor cómo funciona esta estrategia. Ejemplo - Arbitrage Currency Trading Los tipos de cambio actuales del EUR / USD. Los pares EUR / GBP, GBP / USD son 1.1837, 0.7231 y 1.6388, respectivamente. En este caso, un comerciante de divisas podría comprar un mini-lote de EUR por 11.837 dólares. El comerciante podría entonces vender los 10.000 euros, por 7.231 libras esterlinas. Los 7.231 GBP. Podría ser vendido por 11...
Comments
Post a Comment